shaggy_master
brapp brapp!
14.1 yo!!! Get it on lol
crank scrapper is made of nylon and should sit less than a few thousands of an inch away from the crank so that excess oil is removed as it goes past and stop it getting thrown around inside the crank case..
sweet your doing the same as me then but i have a VE block with 2.0 cods with SR16VEpistons.. im just building it and seeing what happens.. n1 cams though carnt afford them aswell as everything else!
gonna be awesome build man, can't wait to get my bits either now. what bearings you goin for? and did you say you thought about eagle rods but weren't gonna bother?
ill be using a metal VET gasket and getting the pistons notched by 10mm or so that should be plenty..
Cheers craig. I probably will go for the eagle rods, I was thinking about getting the DE rods shotpeined & arp bolts but I think that would be not far off the price of a set of rods & the eagles are 100g lighter per rod. I've read good things about the calico coated acl bearings so I'll probably go for them.
.
Crank, Rods, Bearings, Machining, Balancing, Coatings, Manifolds, etc.
The SR20 is blessed with a near bulletproof bottom end. The crank and rods are forged steel unlike the typical cast iron that most American motors run. The rod bolts are a beefy 9mm. The crank features rolled fillets, an uncommon strengthening operation used usually only for racing or heavy duty parts. The rod bolt registers are spot faced, leaving a generous amount of metal around the bolt holes, a traditional weak area in connecting rods.
Both the crank and rods are subjected to a severe shotpeening from the factory. Shotpeening microforges the surface of the part making it stronger and harder while leaving the interior soft and ductile. This step can improve the fatigue strength of a part by over 100% and is usually reserved for high end racing parts. The main caps are tied together with a stiff aluminum girdle which improves bottom end rigidity significantly. This feature is usually found in all out race motors. These design elements produce an engine that is nearly bulletproof. I have seen motors with over 100,000 miles on them with the factory honing marks still visible in the cylinder bores! The number of list members in the 100,000 Mile Club is a testament to the durability of the SR20.
The only catastrophic engine failures that I know of (Tom Paule and Zak Nilsson) were the result of low oil levels with spun bearings. Chuck Nibbana’s super trick engine also mysteriously disassembled itself but that might have been because of improper clearancing. I have screwed up 3 SR20’s myself but that was the result of not watching the temperature gauge while racing IMSA and SCCA. Gross overheating was an understatement. Clark Steppler of JWT has never seen a catastrophic failure that could be traced to the engines fault, either.
The same bottom end of our US model SR20DE also is used for the turbo SR20DET so we have a lot of headspace before we start to challenge the strength of the bottom end. The stock parts can be used until the hp climbs well into the 200’s. So bring on the NOS, turbo boost and compression! We have run Ryan Besterwich's turbo car (formerly Searl's) as high as 20 psi of boost which pushed the car into the low 12's with a completely stock bottom end with no harm. His car has over 80k miles on it and is still going strong. I estimate that his car is putting out over 400 hp with the stock bottom end! If detonation can be controlled the stock bottom end is pretty strong!
If you are building a hot street SR20, I recommend leaving the rods alone. By doing the traditional beam polishing you will be removing the factory tough shotpeened surface. If you reshotpeen the rods after polishing they will have to be resized and straitened as proper shotpeening distorts the parts. It is not likely that a local shotpeener can do as good of a job as the factory either. The same goes for the crank. It won’t hurt to do these traditional race prep steps but it is probably not worth the effort on the SR20.
If you do prep and re-shotpeen your rods make sure that the piston wall oil squirter hole does not get blocked or peened over. This hole sprays oil on the thrust side of the cylinder helping with lubrication and keeping the engine quiet.
In fact, I might say that no matter what you do to build a naturally aspirated motor, if you keep an 8000 rpm or less redline, you don’t need special rods.
I do not have any personal experience with the well-publicized-by-Turbo-magazine, Metalax treatment process but have heard good things about them. I do have plenty of good personnel experience with shotpeening solving many parts breakage problems. Recently I have had very good luck with cryogenic treatment preventing breakage of drivetrain parts with high powered SE-Rs and I am currently building a VG30DE motor using cryogenic treating extensively.
For extreme use in killer turbo motors running near 20 psi of boost or for those of you running 100+hp NOS units, racing rods may be in order. JWT can get Crower rods. I believe these rods are machined from 4140 billet. I am using Cunninham rods in another engine. These rods are a little lighter than Crower and seem just as high quality. Carrillo makes excellent rods also but they would be a custom application and take 6-12 weeks for delivery. These racing rods do not have the oil squirter hole in them which could result in slightly shorter life of rings and pistons.
The rods and pistons should be balance to within ½ gram and the crank dynamically balanced. I have found that Nissans are generally within 1 gram from the factory! A typical American car is usually off by as much as 5-12 grams! I like to polish the journal surface of the crank. You can have a local machine shop do it using the lightest grit of polishing paper belt. You don’t want to remove so much material that the crank dimensions change, just reduce the RMS of the surface by knocking off the peaks of the machining marks.
The factory Nissan bearings are strong and durable. I recommend running bearing clearances in the middle of factory spec on a typical street motor. Clearances on an all out racing motor can be set on the looser side of factory. When buying bearings, Clark Steppler of JWT has told me (and I have also observed) that if an engine has any kind of mileage on it, the next tighter bearing size can be used other than the number that is stamped on each journal of the block and crank. Remember to mike and bore gauge all the journals to confirm proper dimensions before assembling. If you don’t have access to these , at least use plastigauge to make sure that you are in the ball park.